防雷知识系列(一)-雷电基本理论 - 新闻中心 - 乌鲁木齐博科雷曼电子科技有限公司

首页>>新闻中心

防雷知识系列(一)-雷电基本理论

点击数:17592018-06-14 11:23:30 来源: 乌鲁木齐博科雷曼电子科技有限公司

防雷知识系列(一)-雷电基本理论

[ 作者:TIMES    转贴自:防雷技术论坛    点击数:499    文章录入:ming ]

雷电基本理论
      
人们通过模拟地球原始大气在密室中进行放电的实验,结果由无机物合成了11种氨基酸。这些物质的出现,是生命起源的基础,因此,一些生命起源学说认为,是雷电孕育了地球上的生命。同理,地球上空有一层电离层,它是由带正电荷的粒子组成,该电离层起着防止太阳和宇宙空间各种有杀害生命作用的射线进入地面,保护地球上的生命,如果没有这电离层,即使地球上本来已经有的生命,也会被来自太空的各种射线杀死,地球不可能出现现在的繁荣和文明。但是电离层的正电荷以平均约1800A的电流强度向大地放电,可想而知,如果得不到补充,电离层的电荷恨快便会放尽。由于雷电不断补充电离层放电失去的电荷,保持电离层总电荷量大体平衡,使这层生命的保护屏障得以保存,使地球上的生命不致被宇宙射线灭绝。因此,可以说,是雷电促使地球成为文明的星球。从这个角度来讲,人类有今天的文明应该感谢雷电。


由于雷击会给人类带来灾害,因此,人类很早就与雷害进行斗争。其中取得卓越成就的有18世纪中叶著名科学家富兰克林(FranklinM·B·罗蒙诺索夫(JIOMOHOCOB),L·B·黎赫曼(PHXMAH)。他们通过大量实验建立了雷电学说,认为雷击是云层中大量阴电荷和阳电荷迅速中和而产生的现象;并且创立了避雷理论,发明了避雷针。他们取得的庑┛蒲С删停盐死嘧鞒隽酥卮蟮墓毕住?/P>


我国古籍中,有关雷电理论和避雷实践的记载十分丰富。例如东周时《庄子》上记述:“阴阳分争故为电,阳阴交争故为雷,阴阳错行,天地大骇,于是有雷、有霆。”这些学说与现代的雷电学说是如此相似,不过它比现代雷电学说要早2000多年。在古籍中关于建筑工程中避雷的记载也十分丰富。南北朝的孟奥《北征记》中有如下记述:“凌云台南角一百步,有白石室,名避雷室。”又有盛弦之《荆州记》中记述:“湖阳县春秋蓼国,樊重之邑了,重母畏雷,为立石室,以避之,悉之文石为阶砌,至今犹存。”书中谈及的白石、文石,据分析应该属于绝缘性能较好的石块。至于宋、元、明、清代的建筑物多用“雷公柱”(宋代称枨杆)等措施以避雷。

在古籍中有关雷击的事故的记述就更多了,例如:

《续晋阳春秋》:“太元五年,霹雳含殿四柱,杀内侍二人。”

《晋安帝记》:“义熙三年六月,震太庙鸱尾,彻壁柱,若有文字。”

《晋中兴书征祥说》:“元兴三年,永安王皇后至住巴防,将设威仪入宫,天大雷震,人马多死。”


《沈括·梦溪笔谈》:“内侍李舜举家为暴所震,其堂之西屋雷火自窗间出,赫然出檐。人以为堂屋已焚,皆出避之。及雷止,其舍宛然,墙壁窗纸皆默。有一木格,其中杂贮诸器,其漆器银铝者,银悉容流在地,漆器不燃灼。有一宝刀,极坚刚,就刀室中容为汁。而室亦俨然。人必谓:当先焚草木,然后流金石,今乃金石皆烁而草木无一毁者,非人情所测。


《齐书·五行志》:“永元三年正月,豫章郡,天火烧三千余家。”该天火,到底是一般雷击,还是球形雷?未加考证。

以上只是我国古籍关于雷记载中的点滴摘录,当然它与现代雷电理论和避雷技术相比还有差距,但是从历史观点来看,我们的祖先能够在那么早的年代里就创造出那样完整的雷电理论,并且在技术上得到应用,这是我们民族光辉灿烂文化历史的一页。

雷电的成因

通常所谓雷击是指一部分带电的云层与另一部分带异种电荷的云层,或者是带电的云层对大地之间迅猛的放电。这种迅猛的放电过程产生强烈的闪电并伴随巨大的声音。当然,云层之间的放电主要对飞行器有危害,对地面上的建筑物和人、畜没有很大影响。然而,云层对大地的放电,则对建筑物、电子电气设备和人、畜危害甚大,这是我们研究的主要对象。


通常雷击有三种主要形式:其一是带电的云层与大地上某一点之间发生迅猛的放电现象,叫做“直击雷”。其二是带电云层由于静电感应作用,使地面某一范围带上异种电荷。当直击雷发生以后,云层带电迅速消失,而地面某些范围由于散流电阻大,以致出现局部高电压,或者由于直击雷放电过程中,强大的脉冲电流对周围的导线或金属物产生电磁感应发生高电压以致发生闪击的现象,叫做“二次雷”或称“感应雷”。其三是“球形雷”,将在后面另详细说明。

(1)雷云的形成
不管是直击雷还是感应雷都与带电的云层存在分不开,带电的云层称为雷云。有关雷云形成的假说很多,但至今尚未有一种被公认为无懈可击的完整学说,这里我们介绍其中被认为比较完善并经常被推荐的假说。


根据大量科学测试可知,地球本身就是一个电容器,通常大了稳定地带负电荷50C左右,而地球上空存在一个带正电的电离层,这两者之间便形成一个已充电的电容器,它们之间的电压为300KV左右,并且场强为上正下负。


当地面含水蒸气的空气受到炽热的地面烘烤受热而上升,或者较温暖的潮湿空气与冷空气相遇而被垫高都会产生向上的气流。这些含水蒸气的上升时温度逐渐下降形成雨滴、冰雹(称为水成物),这些水成物在地球静电场的作用下被极化(图1-1),
   
   
负电荷在上,正电荷在下,它们在重力作用下落下的速度比云滴和冰晶(这二者称为云粒子)要大,因此极化水成物在下落过程中要与云粒子发生碰撞。碰撞的结果是其中一部分云粒子被水成物所捕获,增大了水成物的体积,另一部分未被捕获的被反弹回去。而反弹回去的云粒子带走水成物前端的部分正电荷,使水成物带上负电荷。由于水成物下降的速度快,而云粒子下降的速度慢,因此带正、负两种电荷的微粒逐渐分离(这叫重力分离作用),如果遇到上升气流,云粒子不断上升,分离的作用更加明显。最后形成带正电的云粒子在云的上部,而带负电的水成物在云的下部,或者带负电的水成物以雨或雹的形式下降到地面。当下面所讲的带电云层一经形成,就形成雷云空间电场,空间电场的方向和地面与电离层之间的电场方向是一致的,都是上正下负,因而加强了大气的电场强度,使大气中水成物的极化更厉害,在上升气流存在在情况下更加剧重力分离作用,使雷云发展得更快。 


从上面的分析,好像雷云总是上层带正电荷,下层带负电荷。实际上气流并不单是只有上下移动,而比这种运动更为复杂。因此雷云电荷的分布也比上面讲的要复杂得多。


根据科学工作者大量直接观测的结果,典型的雷云中的电荷分布大体如图1.2所示。

科学工作者的测试结果表明,大地被雷击时,多数是负电荷从雷云向大地放电,少数是雷云上的正电荷向大地放电;在一块雷云发生的多次雷击中,最后一次雷击往往是雷云上的正电荷向大地放电。从观测证明,发生正电荷向大地放电的雷击显得特别猛烈。


上面的假说首先是由威尔逊(Wilson)提出的,通常把它叫做威尔逊假说。另外,广州有位唐山樵先生对雷云的形成提出了如下的假说: 雷电的出现是与气流、风速密切相关的,而且与地球磁场也有一定的联系。雷雨云内部的不停运动和相互磨擦而使雷雨云产生大量的正、负电荷的小微粒,即所谓的摩擦生电。这样,庞大的雷雨云就相当于一块带有大量正、负电荷的云块,而这些正、负电荷不断地产生,同时也在不断地的复合,当这些云块在水平方向向东或向西迅速移动时(最大风速可达40m/s),它与地球磁场磁力线产生切割,这就好像导体切割磁力线产生电流一样,云中的正、负电荷将产生定向移动,其移动的方向可按右手定则来判断。若云块是由西向东移动,而地磁场磁力线则是由地球南极指向地球的北极,因此大量的正电荷向上移动,负电荷向下移动,这样云的下部将积聚越来越多的负电,而云的上部积聚大量的正电,当电场强度达到足够高(2530KV/cm)时将引起雷云间的强烈放电,或是雷云中的内部放电,或是雷云对地放电,即所谓的雷电。
综上所述,雷电的成因仍为摩擦生电及云块切割磁力线,把不同电荷进一步分离。由此可见,雷电的成因或者说主要能源来自于大气的运动,没有这些运动,是不会有雷电的。这也说明了为什么雷电总伴随着狂风骤雨而出现。

(2)电离层与地面间的电荷平衡
上面说过,地球是一个表面带负电荷的球体,并且它所带的负电荷量长期稳定在5×105C水平,而在地球上空的电离层上则带有相等的正电荷,使电离层与地面之间的电压约300KV。因而在电离层与地面之间存在一个电场,晴天时在地面附件的电场强度为120V/m。即使在晴天时,大气中总有一些空气分子被电离。

  在电场的作用下造成放电电流。根据观测和计算的结果表明,全地球该放电电流强度为1800A,如果长期如此,电离层与地面之间的电荷将很快放电完毕;然而事实上,它们之间大致长期保持恒定的电量和电压,这主要由于雷暴的形成和雷击,把正电荷从大地送回到电离层,起到对电离的正电荷充电的作用。根据卫星观测资料及电学观测资料估计,在任何一时刻全地球表面上连续发生着大约1000个雷暴,从而使电离层与大地之间的电场保持稳定。见图1-3 

(3)尖端放电与雷击
由物理学可知,通常物体内部的正电荷和负电荷是相等的,所以从整体来看不显示带电现象,当某一物体所具有的正、负电荷不相等时,这个物体就显示带电的特性,当物体内部的正电荷多于负电荷,物体带正电,反之带负电。由于电荷都有异性相吸、同性相斥的特性,所以带电物体中的同性电荷总是受到互相排斥的电场力作用。以一个如图14那样的带尖锋的金属球为例,假如金属球带上负电(同理也可以解释带上正电),由于电荷同性相斥的作用,电子总是分布到金属球的最外层表面,并且有“逃离”金属球表面的趋势。球带尖锋部分的电子受到同性电荷往外排斥力最强,故最容易被排斥离开金属球,这就是通常说的“尖端放电”。此外当带电物体周围的空气越潮湿或带有与带电体相反电荷的离子时,带电体也越易放电。

  当天空中有雷云的时候,因雷云带有大量电荷,由于静电感应作用,雷云下方的地面和地面上的物体都带上与雷云相反的电荷。雷云与其下方的地面就成为一个已充电的电容器,当雷云与地面之间的电压高到一定的时候,地面上突出的物体比较明显地放电。同时,天空带电的雷云在电场的作用下,少数带电的云粒(或水成物)也向地面靠拢,这些少数带电微粒的靠拢,叫做先驱注流,又叫电流先导。先驱注流的延续将形成电离的微弱导通,这一阶段称为先驱放电。

  开始产生的先驱放电是不连续的,是一个一个脉冲地相继向前发展。它发展的平均速度为105106m/s各脉冲间隔约3090us,每阶段推进约50 m。先驱放电常常表现为分枝状,这是由于放电是沿着空气电离最强、最容易导电的路径发展的。这些分枝状的先驱放电通常只有一条放电分支达到大地。

  当先驱放电到达大地,或与大地放电迎面会合以后,就开始主放阶段,这就是雷击。在主放电中雷云与大地之间所聚集的大量电荷,通过先驱放电所开辟的狭小电离通道发生猛烈的电荷中和,放出能量,以至发出强烈的闪光和震耳的轰鸣。在雷击中,雷击点有巨大的电流流过。大多数雷电流峰值为几十KA,也有少数上百KA以至几百KA的。雷电流峰值的大小与土壤电阻率的大小成减函数关系,即土壤电阻率高,则雷电流峰值小;土壤电阻率低,、则雷电流峰值大。

雷电流大多数是重复的,通常一次雷电包括34次放电。重复放电都是沿着第一次放电通路发展的。雷电之所以重复发生,是由于雷云非常之大,它各部分密度不完相同,导电性能也不一样,所以它所包含的电荷不能一次放完,第一次放电是由雷云最低层发出的,随后放电是从较高云层、或相邻区发出的。一次放电全部时间可达十分之几秒。 


 

 

 

 

 

 

 

 

 

 

 

防雷知识系列(二)-雷击闪电的特性

雷击闪电的特性                                                            

(1)雷电流的特性


    雷电破坏作用与峰值电流及其波形有最密切的关系。雷击的发生、雷电流大小与许多因数有关,其中主要的有地理位置、地质条件、季节和气象。其中气象情况有很大的随机性,因此研究雷电流大多数采取大量观测记录,用统计的方法寻找出它的概率分布的方法。根据资料表明,各次雷击闪电电流大小和波形差别很大。尤其是不同种类放电差别更大。为此有必要作如下说明。


    由典型的雷雨云电荷分布可知,雷雨云下部带负电,而上部带正电。根据云层带电极性来定义雷电流的极性时,云层带正电荷对地放电称为正闪电,而云层带负电荷对地放电称为负闪电。正闪电时正电荷由云到地,为正值,负闪电时负电荷由云到地,故为负值。云层对地是否发生闪电,取决于云体的电荷量及对地高度或者说云地间的电场强度。


    云地间放电形成的先导是从云层内的电荷中心伸向地面。这叫做向下先导。其最大电场强度出现在云体的下边缘或地上高耸的物体顶端。雷电先导也可能是从接地体向云层推进的向上先导。因此,可以把闪分成四类,只沿着先导方向发生电荷中和的闪电叫无回击闪电。当发生先导放电之后还出现逆先导方向放电的现象,称为有回击闪电。


    上面讲到一次雷击大多数分成34次放电,一般是第一次放电的电流最大,正闪电的电流比负闪电的电流大。这可以从图1.2典型的雷雨云中的电荷分布得到理解。

  
  电流上升率数据对避雷保护问题极其重要,最大电流上升率出现在紧靠峰值电流之前。习惯上用电流波形起始时刻至幅值下降为半幅值的时间间隔来表征雷电流脉冲部分的波长。雷电流的大小与许多因素有关,各地区有很大区别,一般平原地区比山地雷电流大,正闪电比负闪电大,第一闪击比随后闪击大。


(2)闪电的电荷量


    闪电电荷是指一次闪电中正电荷与负电荷中和的数量。这个数量直接反映一次闪电放出的能量,也就是一次闪电的破坏力。闪电电荷的多少是由雷云带电情况决定的,所以它又与地理条件和气象情况有关,也存在很大的随机性。从大量观测数据表明,一次闪电放电电荷Q可从零点几库仑到1000多库仑。然而在一次雷击中,在同一地区它们的数量分布符合概率的正态分布。第一次负闪击的放电量在10多库仑者居多。


    一朵雷云是否会向大地发生闪击,由几个基本因素决定,其一是云层带电荷多少,其二是把云层与大地之间形成的电容模拟为平板电容时,它对大地的电容是多少。当然这个模拟电容两极之间的电压就是由电容和带电量决定的。当这个模拟电容内的电位梯度du/dl达到闪击值时就会发生闪击。当闪击一旦发生,云地之间即发生急剧的电荷中和。


    雷电之所以破坏性很强,主要是因为它把雷云蕴藏的能量在短短的几十μs放出来,从瞬间功率来讲,它是巨大的。但据有关资料计算,每次闪击发出的能量只相当燃烧几千克石油所放出的能量而已。


(3)雷电波的频谱分析


    雷电波频谱是研究避雷的重要依据。从雷电波频谱结构可以获悉雷电波电压、电流的能量在各频段的分布,根据这些数据可以估算通信系统频带范围内雷电冲击的幅度和能量大小,进而确定避雷措施;在电力系统中,了解雷电波频谱分析在避雷工程中,也可以根据其分析结果,用最小的投资,达到足够安全的效果。


    虽然各种雷电波总体的轮廓相似,但是每一次雷电闪击的电流(电压)波形仍然存在很大的随机性。


    雷云向大地或雷云之间剧烈放电的现象称为闪击(这里以讨论前者为主),带负电荷的雷云向大地放电为负闪击,带正电荷的雷云向大地放电为正闪击,雷云对大地放电多为负闪击,其电流峰值以20~50KA居多。正闪击比负闪击猛烈,其电流幅值往往在100KA以上,我国黑龙江省近年曾发生过300KA正电荷闪击记录(通常200KA以上属少见)。


雷电活动及雷击的选择性

(1)雷电活动及雷电活动日


    雷电活动从季节来讲以夏季最活跃,冬季最少,从地区分布来讲是赤道附近最活跃,随纬度升高而减少,极地最少。

    评价某一地区雷电活动的强弱,通常用两种方法。其中一种是习惯使用的“雷电日” ,即以一年当中该地区有多少天发生耳朵能听到雷鸣来表示该地区的雷电活动强弱,雷电日的天数越多,表示该地区雷电活动越强,反之则越弱。我国平均雷电日的分布,大致可以划分为四个区域,西北地区一般15日以下;长江以北大部分地区(包括东北)平均雷电日在15?0日之间;长江以南地区平均雷电日达40日以上;北纬23°以南地区平均雷电日达80日。广东的雷州半岛地区及海南省,是我国雷电活动最剧烈的地区,年平均雷电日高达120--130日。总的来说,我国是雷电活动很强的国家。


    因为人们耳朵能听到的雷声,一般距离只能在15km左右,更远的雷声一般就听不到了,所以雷电日只能反映局部地区雷电活动情况。


    还有一些科学家认为用雷电日表征一个地区雷电活动不够准确,因为一天当中听到一次雷声就算一个雷电日,而一次当中听到1000次雷声也算一个雷电日,并且认为测试地区以1000k㎡范围内发生的闪击次数来统计,这样就得出一种新的评价雷电活动的方法,叫雷闪频数。也就是说雷闪频数是1000k㎡内一年共发生的闪击数(也可以用每1k㎡一年内雷击次数为单位)。显然以1000k㎡作为一个地区单位来评价雷电活动的情况,对航空、航海、气象、通信等现代技术更为适合。然而它的测试方法只能借助于无线电,用耳朵来听是无能为力的。而对于建筑行业防雷,用雷电日单位己足够准确,并且大量观测统计资料表明,一个地区的雷闪频数与雷电话动日成线性关系,所以两种统计方法是没有矛盾的。


(2)雷击的选择


    年平均雷电日这一数字只能给人们提供概略的情况。事实上,即使在同一地区内,雷电活动也有所不同,有些局部地区,雷击要比邻近地区多得多。如广州的沙河,北京的十三陵等地。我们称这些地方为该地区的“雷击区” 


    雷击区与地质结构有关。苏联HC﹒斯捷柯里尼科夫(CTehojhkob)曾用模拟试验的研究方法证明,如果地面土壤电阻率的分布不均匀,则在电阻率特别小的地区,雷击的几率较大。这就是在同一区域内雷击分布还是不均匀的原因。


    这种现象我们称之为“雷击选择性” 。试验结果证明,雷击位置经常在土壤电阻率较小的土壤上,而电阻率较大的多岩石土壤被击中的机会很小。这是因为在雷电先驱放电阶段中,地中的电导电流主要是沿着电阻率较小的路径流通,使地面电阻率较小的区域被感应而积累了大量与雷云相反的异性电荷,雷电自然就朝这些地区发展。


    根据H。那林达(Norinder,O.沙卡(Salka)和上面提到的H.C.斯捷柯尼科夫的试验结果和实际调查资料证明:


    土壤电阻率较大的山区和平原,雷电选择性都比较明显;雷击经常发生在有金属矿床的地区、河岸、地下水出口处、山坡与稻田接壤的地上和具有不同电阻率土壤的交界地段。


    在湖沼、低洼地区和地下水位高的地方也容易遭受雷击。此外地面上的设施情况,也是影响雷击选择性的重要因素。


    当放电通道发展到离地面不远的空中时,电场受地面物体影响而发生畸变。如果地面上有一座较高的尖顶建筑物,例如一座很高的铁塔,由于这些建筑物的尖顶具有较大的电场强度,雷电先驱自然会被吸引向这些建筑物,这就是高耸突出的建筑物容易遭受雷击的缘故。


    在旷野,即使建筑物并不高,但是由于它是比较孤立、突出,因此也比较容易遭受雷击。调查结果表明,在田野里供休息的凉亭、草棚、水车棚等遭受雷击的事故是很多的。


    从烟囱冒出的热气柱和烟囱常含有大量导电微粒和游离分子气团,它们比一般空气易于导电,这就等于加高了烟囱的高度,这也是烟囱易于遭受雷击的原因之一。因此,在一支较高的烟囱附近,如果有一支较低的烟囱,在高烟囱不冒烟而低烟囱冒烟的情况下,雷电往往直接击在低烟囱上。所以在高低两条烟囱并排时,即使低烟囱在高烟囱雷电保护范围之内,但仍然要求两条烟囱都要装避雷装置。

    建筑的结构、内部设备情况和状态,对雷击选择性都有很大关系。金属结构的建筑物、内部有大型金属体的厂房,或者内部经常潮湿的房屋,如牲畜棚等,由于具有很好的导电性,都比较容易遭受雷击。


    上面所谈到的这些雷电选择性,仅仅是一些常见的例子,很不全面,但它已经给我们提供了雷击选择性的资料,因而对防雷工作有重要的意义。据此我们可以决定哪些地区、哪些建筑物应该加避雷装置,而另一些地区、建筑物在防雷投资上可以少花一些或甚至不必花费投资。


    在同一区域内雷击分布不均匀的现象,我们称之为“雷击选择性”。 雷灾事故的历史资料统计和实验研究证明,雷击的地点以及遭受雷击的部位是有一定规律的,因此掌握这些规律对预防雷击有很重要的意义。同一区域容易遭受雷击的地点和部位有:

易遭雷击的地点: 

    土壤电阻率较小的地方,如有金属矿床的地区、河岸、地下水出口处、湖沼、低洼地区和地下水位高的地方; 

山坡与稻田接壤处; 

具有不同电阻率土壤的交界地段。 

易遭受雷击的建(构)筑物: 

高耸突出的建筑物,如水塔、电视塔、高楼等; 

排出导电尘埃、废气热气柱的厂房、管道等; 

内部有大量金属设备的厂房; 

地下水位高或有金属矿床等地区的建(构)筑物; 

孤立、突出在旷野的建(构)筑物。 

同一建(构)筑物易遭受雷击的部位: 

平屋面和坡度≤1/10的屋面,檐角、女儿墙和屋檐; 

坡屋度>1/10且<1/2的屋面;屋角、屋脊、檐角和屋檐; 

坡度>1/2的屋面、屋角、屋脊和檐角; 

建(构)筑物屋面突出部位,如烟囱、管道、广告牌等。 


雷电的破坏作用


当人类社会进入电子信息时代后,雷灾出现特点与以往有极大的不同,可以概括为:

1)受灾面大大扩大,从电力、建筑这两个传统领域扩展到几乎所有行业,特点是与高新技术关系最密切的领域,如航天、航空、国防邮电通信、计算机、电子工业、石油化工、金融证券等;


2)从二维空间入侵变为三维空间入侵。从闪电直击和过电压波沿线传输变为空间闪电的脉冲电磁场从三维空间入侵到任何角落,无空不入地造成灾害,因而防雷工程已从防直击雷、感应雷进入防雷电电磁脉冲(LEMP)。前面是指雷电的受灾行业面扩大了,这儿指雷电灾害的空间范围扩大了。例如二000年七月二十五日1440分左右,一次闪电造成漕宝路桂菁路附近二家单位同时受到雷灾,而不是以往的一次闪电只是一个建筑物受损。

3)雷灾的经济损失和危害程度大大增加了,它袭击的对象本身的直接经济损失有时并不太大,而由此产生的间接经济损失和影响就难以估计。例如一九九九年八月二十七日凌晨2点,某寻呼台遭受雷击,导致该台中断寻呼数小时,其直接损失是有限的,但间接损失将大大超过直接损失。
 

4)产生上述特点的根本原因,也就是关键性的特点是雷灾的主要对象已集中在微电子器件设备上。雷电的本身并没有变,而是科学技术的发展,使得人类社会的生产生活状况变了。微电子技术的应用渗透到各种生产和生活领域,微电子器件极端灵敏,这一特点很容易受到无孔不入的LEMP的作用,造成微电子设备的失控或者损坏。


    为此,当今时代的防雷工作的重要性、迫切性、复杂性大大增加了,雷电的防御已从直击雷防护到系统防护,我们必须站到历史时代的新高度来认识和研究现代防雷技术,提高人类对雷灾防御的综合能力。

 

 

 

 

 

 

 

 

防雷知识系列(三)-雷电防护基础

雷电防护基础                                                                 
现代防雷技术的特点

    现代防雷技术的理论基础在于:闪电是电流源,防雷的基本途径就是要提供一条雷电流(包括雷电电磁脉冲辐射)对地泄放的合理的阻抗路径,而不能让其随机性选择放电通道,简言之就是要控制雷电能量的泄放与转换。 德国专家希曼斯基在《过电压保护理论与实践中》提出了现代防雷保护的三道防线:

    外部保护---将绝大部分雷电流直接引入地下泄散;

    内部保护及过电压保护----阻塞沿电源线或数据线、信号线引入的侵入波危害设备; 

    过电压保护----限制被保护设备上雷电过电压幅值。 这三道防线相互配合,各尽其职,缺一不可。 

 

IEC LPZ防雷分区 

    按电磁兼容的原理把信息系统所在建筑物或构筑物按需要保护的空间由外到内分为不同的雷电防护区 (LPZ),以确定各LPZ空间的雷击电磁脉冲的强度及应采取的防护措施。雷电防护区可分为:

    直击雷非防护区(LPZ OA):本区内的各类物体完全暴露在外部防雷装置的保护范围之外,都可能遭到直接雷击;本区内的电磁场未得到任何屏蔽衰减,属完全暴露的不设防区。 

    直击雷防护区(LPZ 0B): 本区内的各类物体处在外部防雷装置保护范围之内,应不可能遭到大于所选滚球半径雷电流直接雷击;但本区内的电磁场未得到任何屏蔽衰减,属充分暴露的直击雷防护区。 
 
    
第一屏蔽防护区(LPZ1): 本区内的各物体不可能遭到直接雷击,流经各类导体的电流比LPZ 0B区进一步减小;且由于建筑物的屏蔽措施,本区内的电磁场强度也已得到了初步的衰减。 

    第二屏蔽防护区(LPZ 2):为进一步减小所导引的电流或电磁场而增设的后续防护区。 
  
    
第三屏蔽防护区(LPZ 3 需要进一步减小雷击电磁脉冲,以保护敏感设备的后续防护区  

过电压造成建(构)筑物及设备损坏的几个方面


(1)雷电 
   A.
直击雷:是指雷电直接击在建筑物构架、动植物上,因电效应、热效应和机械效应等造成建筑物等损坏以及人员的伤亡。一般防直击雷是通过避雷装置即接闪器(针、带、网、线、)引下线构成完整的电气通路后将雷电流泄入大地。然而接闪器、引下线和接地装置的导通只能保护建筑物本身免受直击雷的损毁,但雷电会透过多种形式及途径破坏电子设备。

   B.感应雷:是雷电在雷云之间或雷云对地的放电时,并在附近的户外传输信号线路、埋地电力线、设备间连接线和电磁感应并侵入设备,使串联在线路中间或终端的电子设备遭到损害。感应雷虽然没有直击雷猛烈,但其发生的几率比直击雷高得多。直击雷只发生在雷云对地闪击时才会对地面造成灾害,而感应雷则不论雷云对地闪击或者雷云对雷云之间闪击,都可能发生并造成灾害。此外直击雷一次只能袭击一个小范围的目标,而一次雷闪击都可以在较大的范围内多个小局部同时产生感应雷过电压现象并且这种感应高压可以通过电力线、电话线等传输到很远,致使雷害范围扩大。


   C.雷电波侵入:由于雷电电流有极大峰值和陡度,在它周围出现瞬变电磁场,处在这瞬变电磁场中的导体会感应出较大的电动势,而此瞬变电磁场,都会在空间一定的范围内产生电磁作用,也可以是脉冲电磁波辐射,而这种空间雷电电磁脉冲波(LEMP)是在三维空间范围里对一切电子设备发生作用。因瞬变时间极短或感应的电压很高,以致产生电火花,其电磁脉冲往往超过2.4高斯。现代银行、邮电、证券机房或营业柜台普通应用微机进行货币存取、信息传递与交换,其对磁脉冲承受限度一般为小于0.007高斯,故在新机房建设或旧机房改造时应对防雷与磁屏蔽措施必须充分注意。


   D.球形雷:是一种特殊的雷电现象,简称球雷。一般是以橙或红色,或似红色火焰地发光球体,(也有带黄色、绿色、蓝色或紫色的),直径一般约为10-20厘米,最大的直径可达一米,存在的时间大约为百分之几秒至几分钟,一般是35秒,其下降时有的无声,有的发出嘶嘶声,一旦遇到物体或电气设备时会产生燃烧或爆炸,其主要是沿建筑物的孔洞或开着的门窗进入室内,有的由烟囱或通气管道滚进楼房,多数沿带电体消失。

(2)操作瞬间过电压:
   
众所周知,当电流在导体上流动时,会产生磁场,储存能量,电流越大,导线越长,储能越大,所以当大型负载(特别是电感性负载)电气设备开关时,便会产生瞬时过电压。

(3)地电位反击:
   
是指雷击大地或接地体,引起地电位上升而波及附近的电子设备,对设备产生反击,损害其对地绝缘。


多层分级(类)保护的避雷装置

    多级分级(类)保护原则:即根据电气、微电子设备的不同功能及不同受保护程序和所属保护层确定防护要点作分类保护;根据雷电和操作瞬间过城市危害的可能通道从电源线到数据通信线路都应做多级层保护。

外部无源保护
    
0级保护区即外部作无源保护,主要有避雷针(网、线、带)和接地装置(接地线、地极)。

    保护原理:当雷云放电接近地面时,它使地面电场发生畸变。在避雷针(线)顶部,形成局部电场强度畸变,以影响雷电先导放电的发展方向,引导雷电向避雷针(线)放电,再通过接地引下线,接地装置将雷电流引入大地,从而使被保护物免受雷击。这是人们长期实践证明的有效的防直击雷的方法。然而,以往一般认为用避雷针架空得越高越好(一般只按45度角考虑),且使用被动放电式避雷针,其反应速度差,保护的范围小以及导通量小。根据现代化发展的要求,避雷针应选择提前放电主动式的防雷装置,并且应该从30度、45度、60度等不同角度考虑,安装,以做到对各种雷击的防护,增大保护范围以及增加导通量。建筑物的所有外露金属构件(管道),都应与防雷网(带,线)良好连接。

内部防护 

    电源部分防护:雷电侵害主要是通过线路侵入。高压部分电力局有专用高压避雷装置,电力传输线把对地的电力限制到小于6000伏(IEC62.41),而线对线则无法控制。所以,对380v低压线路应进行过电压保护,按国家规范应分三部分:建议在高压变压器后端到楼宇总配电盘间的电缆内芯线两端应对地加避雷器,作一级保护;在楼宇总配电盘至楼层配电箱间电缆内芯线两端应对地加装避雷器,作二级保护;在所有重要的、精密的设备以及UPS的前端应对地加装避雷器,作为三级保护。目的是用分流(限幅)技术即采用高吸收能量的分流设备(避雷器)将雷电过电压(脉冲)能量分流泄入大地,达到保护目的,所以,分流(限幅)技术中采用防护器的品质、性能的好坏是直接关系网络防护的关键,因此,选择合格优良的避雷器至关重要。


    信号部分保护:对于信息系统,应分为粗保护和精细保护。粗保护量级根据所属保护区的级别确定,精细保护要根据电子设备的敏感度来进行确定。其主要考虑的如:卫星接收系统、电话系统、网络专线系统、监控系统等。建议在所有信息系统进入楼宇的电缆内芯线端,应对地加装避雷器,电缆中的空线对应接地,并做好屏蔽接地,其中应注意系统设备的在线电压、传输速率、按口类型等,以确保系统正常的工作。


接地处理

    在计算机机房的建设中,一定要求有一个良好的接地系统,因所有防雷系统都需要通过接地系统把雷电流泄入大地,从而保护设备和人身安全。如果机房接地系统做得不好,不但会引起设备故障,烧坏元器件,严重的还将危害工作人员的生命安全。另外还有防干扰的屏蔽问题,防静电的问题都需要通过建立良好的接地系统来解决。一般整个建筑物的接地系统有:建筑物地网(与法拉第网相接)、电源地(要求地阻小于10欧)、逻辑地(也称信号地)、防雷地等,有的(如IBM)公司要求另设专用独立地,要求地阻小于4欧(根据实际情况可能也会要求小于1欧)。然而,各地必须独立时,如果相互之间距离达不到规范要求的话,则容易出现地电位反击事故,因此,各接地系统之间的距离达不到规范的要求时,应尽可能连接在一起,如实际情况不允许直接连接的,可通过地电位均衡器实现等到电位连接。为确保系统正常工作,应每年定期用精密地阻仪,检测地阻值。接地装置由接地极及一些附件、辅助材料组成。接地装置的选材和施工主要决定于土质结构,即土壤的地阻率p。不同层土质结构不同,因而地阻率p不同,为增加接地装置使用效率,应使用长效降阻剂。


有外部防雷措施同时更需要完善内部防雷措施

我们知道外部防雷措施中避雷设施的引下线在接闪以后,会有很大的瞬变电流通过,也就是说在周围会产生很大的瞬变电磁场(LEMP)。因此,安装了外部避雷措施不能代替内部防雷措施。再者,我们都知道,避雷针的工作原理是引雷,所以在概率上来说,安装了避雷针以后,建筑物的避雷系统遭受雷击的可能性会增大,也就是说LEMP发生的几率会变大和产生点的距离会缩短(引下线处),所以安装了外部避雷措施的

含有电脑网络等系统的大厦更加需要内部防雷措施。

防雷知识系列(四)-外部防雷系统

外部防雷系统                                                     

      外部防雷系统由接闪器(避雷针)、引下线、接地地网等有机组成。缺一不可。下面分别对以上三个主要因素的相关技术及安装进行描述。

      主要讲本部分的内容是对建筑物外部空气如何截雷,把雷电流向大地中泄放的问题。
      
本部分的内容提要是:
      (1)
接闪器:避雷针、避雷线、避雷带、避雷网
      (2)
避雷带和避雷网的结构设计
      (3)
接闪器的选择和布置

      接闪器

      直接截受雷击,以及用作接闪的器具、金属构件和金属屋面等,称之为接闪器。功能是把接引来的雷电流,通过引下线和接地装置因如大地中泄放,保护建筑物免受雷害。

      从公元1753年,富兰克林发明了避雷针以来,避雷针作为接闪器唯一的形式,延续了上百年的历史,从十九世纪以后,逐渐有出现了避雷线、避雷带和避雷网。其分类如下:避雷针、避雷线 、避雷带 、避雷网下面逐一介绍。

避雷针

尖端放电
    
由物理学可知,通常物体内部的正电荷和负电荷是相等的,所以从整体来看不显示带电现象。当某一物体所具有的正、负电荷不相等时,这个物体就显示带电的特性。当物体内部的正电荷多于负电荷时,物体带正电,反之带负电。由于电荷都有异性相吸、同性相斥的特性,所以带电物体中的同性电荷总是受到相互排斥电场力的作用。以图中带尖锋的金属球为例,假如金属球上带负电(同样也可以理解带上正电),由于电荷同性相斥的作用,电子总是分布到金属球的最外层表面,并且容易逃离金属球。球的尖锋部分,电子受到同性电荷往外排斥力最强,最容易被排斥离开金属球,这就是通常说的“尖端放电”。


      公元1749429日,富兰克林在给约翰·米西尔(John Mitchel)的信中提出了,云层由于不断受到蒸汽摩擦而带电的看法,他认为"当带电的云块飘过田野、掠过高山、巨树、耸立的高塔、尖屋顶、船舶桅杆、烟筒等物的时候,拖曳出电火,正如许多尖导体和突出物产生的现象一样,整个云层就在那里放出电来"由此,他提出了避雷针的设想。他说:既然尖导体可以把一个离它很远的带电体上的电荷释放掉,避免它对其他物体产生电击,那麽尖导体对于人类可能有些用处。于是他建议将一根上端尖锐并涂有防锈层的铁杆安装在房屋的最高处,并用导线接在它的下端,沿着墙壁直通到地下。在海船上则把铁杆固定在桅杆顶端,用导线连接向下直通入水中。它们就能在云层将要产生电击的千钧一发之际,静悄悄地把电从云中吸走,因而使我们免受最突然、最骇人的悲剧。富兰克林详细描述避雷针的装置,并正式宣布它是在1753年。

    避雷针的英文名字Lightning rod,直译为"闪电棍"更准确些,本无避免雷击之意。这个名词望文生义就会产生误解。我们国内许多物理课本,甚至大学的教课书也把避雷针的原理说成是靠尖端放电中和云层电荷从而消除闪电的,这是错误的。实际上,在富兰克林发明避雷针的时候,提出了两种避雷针工作机理的解析;第一种解析认为,避雷针是靠其针尖电晕放电发出与雷雨云相反的电荷,使雷雨云的电荷得到中和,从而免除建筑物的雷害。第二种解析认为,避雷针是靠把雷雨云所带的异种电荷引导到自身上来,通过良好的接地装置,把雷电流泄入大地,保护建筑物不受雷击。至1753年富兰克林明确倾向于避雷针引雷的理论了,所以说避雷针是靠尖端放电消除闪电而能避雷的提法是错误的,避雷针是消除不了闪电的。

      工作原理
      
雷雨云形成以后对大地的电压,低则几百万伏,高则数千伏甚至更高,雷雨云对大地的一次闪击放电的峰值电流平均为30KA,它的瞬时功率为109-1012W以上。由于瞬时功率很大,所以它的破坏力是相当大的。

       
      当高空出现雷雨云的时候,大地上由于静电感应作用,必然带上与雷雨云相反的电荷,避雷针处于地面建筑物的最高处,与雷雨云的距离最近,由于它与有良好的电气连接,所以它于大地有相同的电位,使避雷针附近空间的电场强度比较大,容易吸引雷电先驱,使主放电都集中到它的上面,从而保护附近比它低的物体遭受雷击的几率大大减少。而避雷针被雷击的几率却大大的提高。避雷针不但不能避雷反而引雷,它是自身的多受雷击而保护周围免受雷击。

       
      由于避雷针与大地有良好的电气连接,能把大地积存的电荷能量迅速传递到雷雨云层中泄放;或把雷雨云层中积存的电荷能量传递到大地中泄放,使雷击而造成的过电压时间大大的缩短,从很大程度上降低了雷击的危害性,这就是避雷针的工作原理。
      
但需要说明,避雷针必须有足够可靠,并且有接地电阻尽量小的引下线接地装置与其配套,否则,它不但起不到避雷的作用,反而增大雷击的损害程度。

      避雷针保护范围的计算方法
      
目前世界各国关于避雷针保护范围的计算公式在形式上各有不同,大体上有如下几种
      
计算方法:
      1
 折线法:即单一避雷针的保护范围为一折线圆锥体。
      2
 曲线法:即单支避雷针的保护范围为一曲线锥体。
      3
 直线法:是以避雷针的针尖为顶点作一俯角来确定,有爆炸危险的建筑物用45°角,对一般建筑物采用60°角,实质上保护范围为一直线圆锥体。
      
1983年起,我国正式制定了自己的防雷规范。目前我国建筑防雷规范GB50057-94也采纳了国际电工委员(IEC)推荐的"滚球法"作为避雷针保护范围的计算方法。

      避雷针的制作规格
      
由大量模拟实验和实际调查统计资料表明,避雷针的外表形状与其避雷效果无明显的关系,所以,不必过多考虑采用单针式或者其他形式造型的避雷针。

       避雷针宜采用圆钢或钢管制成,其直径不应小于下列数值:
       
针长1m以下: 圆钢为12mm 钢管为20mm
       针长1-2m 圆钢为16mm 钢管为25mm
       烟囱顶上的针: 圆钢为20mm 钢管为40mm (GB50057-94.第四章)


      主动式避雷针
      
近来国内市场经销一种叫主动式避雷针的产品,主要有来自法国和澳大利亚的产品,据厂家称,这此产品能够随大气电场变化而吸收能量,当存储的能量达到某一程度时,便会在避雷针尖放电,尖端周围空气离子化,使避雷针上方形成一条人工的向上的雷电先导,它比自然的向上的雷电通道能更早的于雷雨云向下的雷电先导接触,形成主放电通道。这样,一方面可以使雷雨云靠该避雷针放电的几率增加,相当于避雷针的保护范围加大,或者相当于将避雷针加高。

      避雷线

       
      接闪器最初的形式只是富兰克林所设计的磨尖的铁棒。20世纪初,在电力系统,为了使输电线路少受雷击,采用了在输电线路上方架设平行的钢线避雷的方法,在实用中,由于它简单有效,逐步得到了推广。这种架设在输电线路上方的钢线,称之为避雷线。后来在房屋建筑上也推广了这种形式,开始布设在方脊、屋角、房檐等处作雷电保护,以后这种方式又有所改进。

      避雷带
       
      
在房屋建筑雷电保护上,用扁平的金属带代替钢线接闪的方法称之为避雷带,它是由避雷线改进而来。在城市高大楼房上,使用避雷带比避雷针有较多的优点,它可以与楼房顶的装饰结合起来,可以与房屋的外形较好的配合,即美观防雷效果又好,特别是大面积的建筑,它的保护范围大而有效,这是避雷针所无法比的。避雷带的制作,采用扁钢,截面积不小于48mm2,其厚度不应小于4mm

      避雷网
       
      
避雷网是指利用钢筋混凝土结构中的钢筋网作为雷电保护的方法(必要时还可以辅助避雷网),也叫做暗装避雷网。它是根据古典电学中法拉第笼的原理达到雷电保护的金属导电体网络。

       
    暗装避雷网是把最上层屋顶作为接闪设备。根据一般建筑物的结构,钢筋距面层只有6-7cm,面层愈薄,雷击点的洞愈小。但有些建筑物的防水层和隔热层较厚,入彀钢筋距面层厚度大于20cm,最好另装辅助避雷网。辅助避雷网一般可用直径为6mm或以上的镀锌圆钢,网格大小可根据建筑物重要性,分别采用5m5m10m10m的圆钢制成。避雷网又分明网和暗网,其网格越密可靠性越好。
    
建筑物顶上往往有许多突出物,如金属旗杆、透气管、钢爬梯、金属烟囱、风窗、金属天沟等,都必须与避雷网焊成一体做接闪装置。在非混凝土结构的建筑物上,可采用明装避雷网。做法是首先在屋脊、屋檐等到顶的突出边缘部分装设避雷带主网,再在主网上加搭辅助网。

避雷带和避雷网的结构设计
    
    
避雷带和避雷网一般采用圆钢或扁钢,其尺寸不应小于下列数值:
    
圆钢直径为8mm,扁钢截面积为48mm2,扁钢厚度为4mm
    
避雷线一般采用截面积不小于35mm2的镀锌钢绞线架设。

      安装避雷带和避雷网要注意下面事项:

      1、避雷带及其连接线经过沉降沟(沉降沟:一座较长的多层建筑物,往往在横向上把建筑物分成几段,段与段之间留有一段空隙,防止各段下沉不一致,引起建筑物损坏)时,应备有10-20cm以上的伸缩余裕的跨越线。

      2、 有女儿墙的平顶房屋,其宽度小于24m时,只须沿女儿墙上部敷设避雷带;宽度大于24m时,须在房面上两条避雷带之间加装明装连接条,连接条的间距不大于20m时,只在屋檐上装避雷带;宽度大于20m时,需在屋面上加装明装连接条,连接条间距不大于20m

      3、瓦顶房屋面坡度为27°-35°,长度不超过75m时,只沿屋脊敷设避雷带。四坡顶房屋,应在各坡脊上装上避雷带。为使檐角得到保护,应在屋角上装短避雷针或将避雷带的引下线从檐角上绕下来。如果屋檐高度高于12m,且长度大于75m时,要在屋脊和房檐上都敷设避雷带。

      4、当屋顶面积非常大时,应敷设金属网格,即避雷网。避雷网分明网和暗网,网格越密,可靠性越好,网格的密度视建筑物重要程度而定,重要建筑物采用55m的密网格,一般建筑物用2020m的网格即可。

      在非混凝土结构的建筑物上,可采用明装避雷网。做法是首先在屋脊、房檐等到顶的突出边缘部分装设避雷带主网,再在主网上加搭辅助网,避雷网格大小按上述要求。采用避雷带和避雷网保护时,屋顶上的烟囱、混凝土女儿墙、排气楼、天窗及建筑装饰等突出于屋顶上部的结构物和其他突出部分,都要装设短避雷针或避雷带保护,或暗装防护线,并连接到就近避雷带或避雷网上。对金属旗杆、金属烟囱、钢爬梯、风帽、透气管等必须与就近的避雷带、避雷网焊接。

       
      采用避雷带和避雷网保护时,每一座房屋至少有两根引下线(投影面积小于50m2的建筑物可只用一根)。避雷引下线最好对称布置,例如两根引下线成""字或"Z"字形,四根引下线要做成""字形,引下线间距离不应大于20m,当大于20m时,应在中间多引一根引下线。见《雷电与避雷工程的避雷带和避雷网的结构设计》

      接闪器的选择和布置
       
合理设计的接闪器将显著地减少雷电击中需要防雷空间的可能性。

       
      只有将防雷装置的设计与建筑结构设计同时进行时,才能在技术和经济上得到最优化的组合。特别是在设计建筑物时,就应充分利用

【责任编辑:(Top) 返回页面顶端

下一篇:科普宣传

上一篇:第四章 信息系统防雷

新公网安备 65010402000812号